PHYSICS 504

OPTICS REVIEW SOLUTIONS

1

Step 1: Find n_{1}
$n_{1} \sin i^{\circ}=n_{2} \sin r^{\circ}$
$n_{1} \sin 40^{\circ}=1 \sin 65^{\circ}$
$n_{1}=1.4$
Step 2: Find critical angle (knowing $r^{\circ}=90^{\circ}$)
$n_{1} \sin i^{\circ}=n_{2} \sin r^{\circ}$
$1.4 \sin i^{\circ}=1 \sin 90^{\circ}$
$\sin i^{\circ}=0.714$
$i^{\circ}=\sin ^{-1} 0.714$
$i^{\circ}=45^{\circ}$

2 Example of an appropriate and complete answer

Angle of reflection
$90^{\circ}-70^{\circ}=20^{\circ}$
Angle of reflection $=$ Angle of refraction $=20^{\circ}$
Calculating index of refraction of unknown medium
$\mathrm{n}_{1} \sin \theta_{1}=\mathrm{n}_{2} \sin \theta_{2}$
$\mathrm{n}_{2}=\frac{\mathrm{n}_{1} \sin \theta_{1}}{\sin \theta_{2}}$
$\mathrm{n}_{2}=\frac{(1.00)\left(\sin 40^{\circ}\right)}{\sin 20^{\circ}}$
$\mathrm{n}_{2}=1.88$
Answer: The index of refraction of the unknown medium is 1.88 .

Tan $\theta: \frac{\text { opposite }}{\text { adjacent }}=\frac{5}{6} \quad$ Therefore $\theta=39.8^{\circ}$
Corresponding angle at water surface: 50.2°
Critical angle: $\sin ^{-1}\left(\frac{1}{1.36}\right)=47.3^{\circ}$
Answer: Marlin and Nemo can see each other because of total internal reflection.
Justification: As the complimentary angle exceeds the critical angle, total internal reflection occurs.

4 Defect in the eye : myopia
Correction is accomplished by: wearing glasses or contact lenses with divergent lenses.

5 Example of an appropriate procedure

1. Converging lens (magnification for a real image is negative)

$$
M=-4
$$

Therefore, $-4=\frac{d_{\mathrm{i}}}{d_{\mathrm{o}}} \rightarrow d_{\mathrm{i}}=4 d_{\mathrm{o}}$
2. Distance from the lens to the object

$$
\begin{aligned}
& \frac{1}{f}=\frac{1}{d_{\mathrm{o}}}+\frac{1}{d_{\mathrm{i}}} \\
& \frac{1}{50 \mathrm{~cm}}=\frac{1}{d_{\mathrm{o}}}+\frac{1}{4 d_{\mathrm{o}}} \\
& \frac{1}{50 \mathrm{~cm}}=\frac{5}{4 d_{\mathrm{o}}} \\
& d_{0}=\frac{5(50 \mathrm{~cm})}{4} \\
& d_{0}=62.5 \mathrm{~cm}
\end{aligned}
$$

Note : A procedure based on a diagram is also acceptable.
Answer : \quad She must place the lens 62.5 cm from the object.

Example of an appropriate and complete answer

Calculating distance of image
$\frac{1}{f}=\frac{1}{d_{\mathrm{o}}}+\frac{1}{d_{\mathrm{i}}}$
$\frac{1}{d_{\mathrm{i}}}=\frac{1}{f}-\frac{1}{d_{\mathrm{o}}}$
$\frac{1}{d_{\mathrm{i}}}=\frac{1}{0.50 \mathrm{~m}}-\frac{1}{1.5 \mathrm{~m}}$
$\frac{1}{d_{\mathrm{i}}}=1.33$
$d_{\mathrm{i}}=0.75 \mathrm{~m}$

Calculating height of image
$\frac{h_{\mathrm{i}}}{h_{\mathrm{o}}}=-\frac{d_{\mathrm{i}}}{d_{\mathrm{o}}}$
$h_{\mathrm{i}}=-\frac{d_{\mathrm{i}} h_{\mathrm{o}}}{d_{\mathrm{o}}}$
$h_{\mathrm{i}}=-\frac{(0.75 \mathrm{~m})(0.10 \mathrm{~m})}{(1.5 \mathrm{~m})}$
$h_{i}=-5.0 \times 10^{-2} \mathrm{~m}$

Example of an appropriate procedure

$$
\begin{aligned}
& f=\quad=12.0 \mathrm{~cm} \\
& d_{\mathrm{o}} \\
& \mathrm{~d}_{\mathrm{i}} \\
& = \\
& \frac{1}{f}=\frac{1}{d_{\mathrm{o}}}+\frac{1}{d_{\mathrm{i}}} \\
& \frac{1}{12.0}=\frac{1}{x}+\frac{1}{64.0-x} \\
& \frac{1}{12.0}=\frac{64.0-x}{(x)(64.0-x)}+\frac{x}{(x)(64.0-x)} \\
& \frac{1}{12.0}=\frac{64.0}{(x)(64.0-x)} \\
& \frac{1}{12.0}=\frac{64.0}{64.0 x-x^{2}} \\
& 64.0 x-x^{2}=768 \\
& x^{2}-64.0 x+768=0 \\
& (x-16)(x-48)=0 \\
& d_{\mathrm{o}}=16.0 \mathrm{~cm} \text { or } 48.0 \mathrm{~cm} \\
& M=-\frac{d_{\mathrm{i}}}{d_{\mathrm{o}}}=\frac{h_{\mathrm{i}}}{h_{\mathrm{o}}}>1 \\
& \therefore d_{\mathrm{i}}>d_{\mathrm{o}}
\end{aligned}
$$

Answer: Nadia must place the lens $\mathbf{1 6 . 0} \mathbf{~ c m}$ from the object.

9 Example of an appropriate and complete answer

$$
\begin{array}{ll}
\frac{h_{\mathrm{i}}}{h_{\mathrm{o}}}=-\frac{d_{\mathrm{i}}}{d_{\mathrm{o}}}=+\frac{4}{1} & \therefore \quad d_{\mathrm{o}}=-\frac{d_{\mathrm{i}}}{4} \\
\frac{1}{f}=\frac{1}{d_{\mathrm{o}}}+\frac{1}{d_{\mathrm{i}}} & \text { replace } d_{\mathrm{o}}: \frac{1}{f}=\frac{1}{\frac{-d_{\mathrm{i}}}{4}}+\frac{1}{d_{\mathrm{i}}} \\
\text { Simplifying } \frac{1}{f}=\frac{-4}{d_{\mathrm{i}}}+\frac{1}{d_{\mathrm{i}}} & \therefore \frac{1}{f}=\frac{-3}{d_{\mathrm{i}}}
\end{array}
$$

Replacing $f=19 \mathrm{~cm}$

$$
\frac{1}{19 \mathrm{~cm}}=\frac{-3}{d_{\mathrm{i}}}
$$

$$
d_{\mathrm{i}}=-57 \mathrm{~cm}
$$

Answer: \quad The distance of the image from the magnifying glass is $\mathbf{- 5 7} \mathbf{~ c m}$ OR:
57 cm , on the same side as object
NOTE: A graphical solution is also acceptable.
$10 \quad f=10.0 \mathrm{~cm}=0.100 \mathrm{~m}$
$d_{i}=4.10 \mathrm{~m}$
$\frac{1}{f}=\frac{1}{d_{o}}+\frac{1}{d_{i}}$
$\frac{1}{0.100 m}=\frac{1}{d_{o}}+\frac{1}{4.10 m}$
$d_{o}=0.103 \mathrm{~m}$ is the distance between the lens and slide.

Example of an appropriate and complete answer

Optical power of first lens is -2.00 diopters
Optical power of second lens

$$
\begin{aligned}
P_{2} & =\frac{1}{f_{2}} \\
P_{2} & =\frac{1}{0.200 \mathrm{~m}} \\
P_{2} & =5.00 \text { diopters }
\end{aligned}
$$

Optical power of third lens
$P_{\mathrm{t}}=P_{1}+P_{2}+P_{3}$
$1.5 \mathrm{~d}=-2.00 \mathrm{~d}+5.00 \mathrm{~d}+P_{3}$
$P_{3}=-1.50 \mathrm{~d}$
Focal length of third lens

$$
\begin{aligned}
f_{3} & =\frac{1}{P_{3}} \\
f_{3} & =\frac{1}{-1.50 \mathrm{~d}} \\
f_{3} & =-0.667 \mathrm{~m}
\end{aligned}
$$

Answer: The focal length of the third lens is $\mathbf{- 0 . 6 6 7} \mathrm{m}$ or $-\mathbf{6 . 6 7} \times \mathbf{1 0}^{\mathbf{- 1}} \mathbf{~ m}$

